Research Overview: Materials Research on Nanocatalysts

Our research focuses on the synthesis, characterization, and testing of non-precious metal and metal oxide nanocatalysts for applications in water treatment, electrochemical energy conversion, and agricultural applications.

We synthesize iron-based bimetallic nanoparticles and nanoparticle-carbon composite materials for reactive degradation of water contaminants. Reactive nanoparticles can be used to reductively degrade halogenated organics, oxidize pharmaceuticals and pesticides, and change the oxidation state of heavy metals. Both reaction and adsorption mechanisms can occur during contaminant removal.

We are interested in improving the performance of non-precious metal oxide and hydroxide nanocatalysts for electrochemical reactions such as the oxygen evolution reaction. We focus on alkaline electrochemistry and work to understand how nanocatalyst synthesis parameters can be controlled to obtain specific catalyst composition, phase, and morphology. We then evaluate catalysts to understand correlations between catalyst properties and performance.

We investigate engineering solutions to challenges in agriculture related to nitrogen and phosphorus nutrient cycles. We currently are developing catalyst materials for the electrochemical reduction of nitrogen to ammonia and are interested in improving water treatment and nutrient recycling through electrochemistry.